skip to main content


Search for: All records

Creators/Authors contains: "Kaur, Sumanjeet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Relaxor ferroelectric polymers exhibiting a giant electrocaloric effect (ECE) can potentially be used to create next‐generation solid‐state coolers. Under an electric field, poly(vinylidene fluoride‐trifluoroethylene‐chlorofluoroethylene) terpolymer goes through a large dipolar entropy change producing a high adiabatic temperature change (ΔTECE). This work resolves the molecular origins of the large entropy change behind the electric field‐induced dipole switching. A Fourier transform infrared spectroscopy equipped with a high voltage source is used to operandoly observe the characteristic molecular vibrational modes. A short‐range trans (T) conformation of the CF2‐CH2dyads interrupted by a gauche (G) conformation, e.g., TTTG in the terpolymer chain, undergoes a dynamic transformation that leads to a corresponding ΔTECEwhenever an electric field is applied. The molecular dynamics simulation also proves that the energy barrier that the transformation from TTTGs into a long T sequence overcomes is smaller than that for all other conformations. A mixed solvent system is used to obtain T3G‐enriched terpolymer films exhibiting a 4.02 K ΔTECEat 60 MV m−1and these films are employed to manufacture a 2‐layer‐cascaded cooling device that achieves a 6.7 K temperature lift, the highest reported value for a 2‐layer cascaded device made of fluoropolymers.

     
    more » « less
    Free, publicly-accessible full text available February 22, 2025
  2. Abstract

    Thermoelectrics operating at high temperature can cost-effectively convert waste heat and compete with other zero-carbon technologies. Among different high-temperature thermoelectrics materials, silicon nanowires possess the combined attributes of cost effectiveness and mature manufacturing infrastructures. Despite significant breakthroughs in silicon nanowires based thermoelectrics for waste heat conversion, the figure of merit (ZT) or operating temperature has remained low. Here, we report the synthesis of large-area, wafer-scale arrays of porous silicon nanowires with ultra-thin Si crystallite size of ~4 nm. Concurrent measurements of thermal conductivity (κ), electrical conductivity (σ), and Seebeck coefficient (S) on the same nanowire show aZTof 0.71 at 700 K, which is more than ~18 times higher than bulk Si. ThisZTvalue is more than two times higher than any nanostructured Si-based thermoelectrics reported in the literature at 700 K. Experimental data and theoretical modeling demonstrate that this work has the potential to achieve aZTof ~1 at 1000 K.

     
    more » « less